Aircraft electrification

The future of aerospace starts with Cranfield
The relationship between aviation and the environment is one of the key challenges facing developed societies.

Major reductions in carbon emissions are required to meet environmental targets. Aviation emissions are increasing by around 5% a year and the EU’s Flightpath 2050 programme calls for a 75% reduction in carbon emissions per passenger kilometre by 2050. Aircraft electrification is a necessary step towards achieving those goals and tackling climate change.

As the only university in Europe with its own airport, aircraft and air navigation service provider, Cranfield offers a unique spectrum of relevant capabilities, expertise and facilities for the development of aircraft electrification and the aviation ecosystem. This includes the relevant approvals to design, build and fly a whole new aircraft concept. This is integral to achieving urban air mobility.

Challenges in electrification include thermal management, systems design for integration into the airframe, battery management, power-to-weight ratios, testing, reliability and certification of new aircraft technology.

Aircraft electrification will not succeed without parallel development in airport infrastructure, power supply and distribution, and assessment of the impact of aviation on the environment. With Cranfield’s global research airport and airdrome solar power farm, our £67 million Digital Aviation Research and Technology Centre (DARTeC), and our fully instrumented autonomous vehicle test road (MUEAVI) alongside the airport perimeter, we provide a testbed for this transformative future technology.

Professor Helen Atkinson CBE FREng Pro-Vice-Chancellor

Above: Cross sectional drawing of a hybrid-electric aircraft. Cover: Turbo-electric airliner.

Aircraft vehicle design page 4
Aircraft propulsion page 6
Unmanned aerial systems technology page 8
Relevant technologies – batteries, energy storage, electric motors and generators page 10
Relevant technologies – materials technology and additive manufacturing for aircraft electrification page 12
Integrated vehicle health management page 14
Rotorcraft technology page 16
Aviation ecosystem and the production and distribution of electrical power page 18
Cranfield Aerospace Solutions Ltd page 20
Cranfield’s global research airport page 22
Aircraft vehicle design

Our experience in whole electric aircraft design includes aircraft structures, systems, avionics and propulsion systems integration. We use state-of-the-art, computer-aided design tools and in-house bespoke modelling and simulation software to facilitate development and certification. This enables us to model the whole aircraft in a synthetic environment at various design stages to achieve cost-effective design.

Expertise includes thermal and battery management, trajectory optimisation, aerodynamics, propulsion, structures, systems, avionics, and comparisons between conventional and more-electric aircraft.

We have completed multiple studies and high-fidelity models for different aircraft sizes and configurations including:
- unmanned aerial vehicles,
- electric vertical take-off and landing,
- sub-regional, regional and medium range,
- single aisle,
- blended wing body configurations.

A new concept in personal air mobility

The Volante Vision Concept (pictured left) is a near-future study that envisions a luxurious form of air travel in the form of an autonomous hybrid-electric vehicle with vertical take-off and landing (VTOL) capabilities. In partnership with Aston Martin, Cranfield Aerospace Solutions and Rolls-Royce, Cranfield is leading work on the autonomous flight controls, connectivity and security of the aircraft. Our digital aviation research at the University will also support how the aircraft fits into the wider transportation ecosystem.

For further information, please contact:
Professor Howard Smith
Professor of Aircraft Design
T: +44 (0)1224 798287
E: howard.smith@cranfield.ac.uk
Aircraft propulsion

Our capabilities span from hybrid to all-electric propulsion. At the aircraft systems level, thermal management is key to electric and hybrid-electric aircraft, and we have developed this expertise through industry-funded research in these areas. Our in-house tools allow energy and thermal management to be sized and optimised at vehicle and mission levels.

Specific capabilities

- Fundamental research on key technologies, hybrid gas turbine design and performance, including variable cycles, gas turbine re-sizing and the aerodynamic integration of electric propulsors.
- Multi-physics methods and tools: framework for the modelling and analysis of integrated hybrid-electric aircraft and systems, including modules for the aircraft propulsion system, energy storage, electrical network and thermal management.
- System architecture: modelling, sizing and analysis of fully integrated systems at system, aircraft and mission levels, including the ability to size and match electrical, energy storage, thermal management and propulsion modules.
- Advanced energy management strategies to minimise fuel, energy and maintenance costs, emissions and environmental impact. Systems are customised for aircraft size and mission as well as technology level.
- Design concepts for cryogenic cooling systems for all-electric thrust aircraft propulsion systems.
- Through-life cost modelling frameworks for vertical take-off and landing (VTOL) hybrid-electric business jets.
- Components design, analysis and integration (system, physical and aerodynamics) of electric fans.
- Lifecycle and techno-economic environmental and risk analysis: full emission and energy analysis including complete energy usage for electric and fossil fuel technologies, maintenance costs and component lifecycles, performance degradation and adaptive control, charging of batteries from different sources and/or during flight.
- Digital twinning for electric aircraft: data modelling and management.

For further information, please contact:

Professor Pericles Pilidis
Head of Centre for Propulsion Engineering
T: +44 (0)1234 754646
E: p.pilidis@cranfield.ac.uk

Dr Panagiotis Laskaris
Head of Hybrid Electric Propulsion Group
T: +44 (0)1234 754643
E: p.laskaris@cranfield.ac.uk

NASA research grant

In 2013, NASA awarded Cranfield a three-year grant for research into future distributed propulsion systems, including turbo-electric. The award to a non-US institution was a first and provided for wide-ranging research to improve both propulsive efficiency and airframe performance, as well as achieving reductions in noise, emissions and energy consumption.
Unmanned Aerial Systems (UAS) technology

Our research shows that artificial intelligence-based control strategies for UAS power management reduce fuel consumption for designed flight missions.

Electrification systems architectures have been developed that lead to optimal trade-off between fuel consumption and flight duration, from conceptual design which balances propulsion energy that each energy source can make to design validation using hardware-in-the-loop and flying tests.

The National Beyond Visual Line of Sight Experimentation Corridor (NBEC) provides industry and academia with a unique 16 km development facility to help solve the challenges that low-altitude unsegregated autonomous and electric flight presents.

Our specialisms include:
- artificial intelligence-based equivalent consumption minimisation strategies,
- systems integration,
- sizing of hybrid-electric propulsion systems,
- design of hybrid fuel cell and battery propulsion systems for long-endurance small Unmanned Aerial Vehicles (UAVs),
- thermoelectric power generation for UAV applications.

Persistent green autonomous air vehicles

We have worked on various projects to provide high efficiency power plants for UAVs to extend operational times and payloads, decreasing costs and increasing productivity. We have developed a hybrid-electric propulsion system that is recharged by an internal combustion engine, and other methods to sustain battery charge levels and improve safety by guaranteeing that aircraft can land using remaining electrical energy if the engine fails. We are also researching fuel cells to potentially bridge the transition between battery-powered and internal combustion engine-powered UAVs.
Relevant technologies

Batteries, energy storage, electric motors and generators

Our research in this area centres on managing ultralight batteries and the characterisation of batteries and their associated duty cycles, including lithium-sulfur batteries. We focus on the practicalities of using batteries in the real world. This extends from the design of algorithms to estimate the internal state of charge and health of batteries to facilities to subject cells and small modules or packs to realistic electrical and thermal duty cycles. We have led the development of critical battery management algorithms for lithium-sulfur batteries, which combine light weight with strong safety, low production-scale costs and good environmental credentials.

Other capabilities include:

- design of electric motors, from milliwatt to megawatt power range;
- high power density machines for hybrid/all-electric propulsion — including superconducting machines;
- modelling of motors, generators and electrical systems;
- feedback control of motors, generators and electrical systems;
- wireless power transfer for stationary and dynamic charging of electric vehicles, including autonomous aerial vehicles.

For further information, please contact:

Dr Daniel Auger
Senior Lecturer in Control and Vehicle Systems
T: +44 (0)1234 756052
E: d.j.auger@cranfield.ac.uk

Professor Patrick Luk
Professor of Electrical Engineering
T: +44 (0)1234 754776
E: p.c.luk@cranfield.ac.uk

A lithium-sulfur cell ready for testing in Cranfield’s advanced battery laboratory.
Relevant technologies

Materials technology and additive manufacturing for aircraft electrification

The most common traditional materials used in electrical energy distribution systems are copper and copper alloys. Modern applications show an increasing demand for better heat and electric current carrying capacity at a level beyond the capability of copper base materials. Nanocarbon materials, such as carbon nanotubes and graphene, have high electrical and thermal conductivity and exceptional mechanical properties.

Super lightweight multifunctional structures ideal for electric aeroplane development

We are combining copper as well as aluminium with nanocarbons to develop new grades of super strong conductors. Our concept composite structures are made using novel manufacturing techniques to produce structures with integrated electric conductors. This potentially serves the need for power and signal transmission within active load-bearing elements for the whole structure.

Wire + Arc Additive Manufacturing (WAAM) can create metallic, defect-free additive manufacture components in titanium and aluminium and core research has already been completed with aerospace components. The combination of WAAM with low energy plasma deposition processes could revolutionise new aircraft design by removing electrical and data cable assemblies in future aircraft. Conductive and insulating tracks used to carry electrical signals and data through aircraft can be embedded using WAAM, without the need to use separate conductors for this function.

For further information, please contact:
Professor Krzysztof Koziol
Head of Enhanced Composites and Structures Centre
T: +44 (0)1234 754153
E: k.koziol@cranfield.ac.uk
Integrated vehicle health management

Conscious aircraft

The Integrated Vehicle Health Management (IVHM) Centre, with its industrial partners, has a long-term aspiration to deliver a ‘conscious aircraft’ that is self-monitoring and self-learning.

This self-sensing/aware aircraft will be capable of monitoring its current health, reliably predicting remaining useful life and automatically reconfiguring to optimise and plan future maintenance, repair and overhaul to minimise cost. The conscious aircraft is likely to be hybrid-electric, with smaller new entrant aircraft being all-electric and autonomous.

Our projects in this area include:

- Prognostics Health Management (PHM)-based adaptive power management for hybrid-electric aircraft: a novel approach for adaptive power management considering prognostics health indicators for electrical power generation and distribution systems.
- Reliable power electronics for aircraft systems: with growth in the electrification of aircraft, power electronics will increasingly be placed in harsher environments for weight and cost savings. PHM algorithms have been developed to monitor and predict failures and calculate remaining useful life. This could be used for optimised maintenance planning and to provide high availability of new, more-electric aircraft systems.
- Health monitoring of motors and generators: we have developed health monitoring and prognostics capability for Integrated Drive Generators (IDG) in the European Union-funded RePAR project. We have also developed 95 kilowatt electrical motors connected back-to-back to test and develop real-time health indicators for electrical motors and generators. These could be used to detect mechanical and electrical faults and evaluate new designs for reliability and performance.

For further information, please contact:

Professor Ian Jennions
Director of IVHM Centre
T: +44 (0)1234 754087
E: ijennions@cranfield.ac.uk
Rotorcraft technology

Electrification of future rotorcraft and electric vertical take-off and landing (eVTOL) platforms

At the forefront of rotorcraft research and technology evaluation for over ten years, we are now building on this track record with research into rotorcraft electrification. In addition to our membership of the Technology Evaluator of the EU Clean Sky joint technology initiative, which is responsible for rotorcraft, we have other ongoing research with key partners such as Rolls-Royce and Siemens on the electrification of current and future rotorcraft platforms. We are currently leading the organisation of a consortium of 14 partners to investigate future hybrid-electric, turbo-electric and superconducting rotorcraft applications.

Using fully integrated, multi-disciplinary technology evaluation tools, we offer:
- full rotorcraft aerodynamic modelling,
- full 3D rotor aero-elastic representation,
- 4D mission profile definition and performance analysis,
- conventional (turboshift), hybrid-electric or turbo-electric power plant modelling,
- systems modelling and thermal management,
- emissions, operability and certification assessment,
- source noise prediction on-the-fly,
- far-field ground noise impact,
- 4D mission-trajectory acoustic footprint,
- stochastic noise prediction under uncertainty,
- aeroacoustic optimisation of novel rotorcraft configurations,
- investment cost analysis,
- mission, airport and air traffic systems performance assessment,
- a variety of modelling tools developed in-house.

More-electric rotorcraft applications

We are working with Siemens PLM Software to assess thermoelectric power plants for twin-engine medium helicopter applications in terms of performance and operability. We are considering hybrid-electric propulsion systems using simple gas turbine cycles, as well as recuperated ones. Preliminary results show that low degrees of hybridisation may offer both operational and performance benefits. Recuperated gas turbine configurations show larger benefits.

For further information, please contact:
Professor Vassilios Pachidis
Professor of Propulsion Integration Engineering
T:+44 (0)1234 754663
E:v.pachidis@cranfield.ac.uk
Aviation ecosystem and the production and distribution of electrical power

Our work in this area focuses on infrastructure and redesigning our airport network to allow for a range of electric vehicle re-charging while managing the electricity grid. Our expertise in transport systems and the energy and power sector allows an approach to aircraft electrification that considers the wider aviation ecosystem and net environmental gain.

Our living laboratory is a testbed for transformative technologies and new approaches to deliver enhanced social, economic and environmental outcomes in urban, transport and infrastructure systems. With our own airport, solar power farm and range of large-scale facilities, the Cranfield campus is a microcosm of a modern city. We can experiment with innovation at scale, using all of the infrastructure of an urban environment. Our Urban Observatory with a campus-wide sensor network, is a key component of the living laboratory.

Other expertise includes:
- airline economics and route development,
- integration of electric aircraft into legacy systems and supply chains,
- passenger experience and acceptance,
- international and UK regulation.

The production and distribution of electrical power is key to the successful integration of aircraft electrification into the aviation ecosystem. Both renewable and traditional power sources will be required along with reliable large-scale power storage systems.

We offer support in infrastructure-based disciplines including:
- renewable energy production and control systems,
- electrical distribution and grid systems,
- energy harvesting systems,
- power charging systems,
- electrical engineering - machines, motors and drives,
- monitoring and control systems,
- power storage - battery, thermal and chemical systems.

Pollutant monitoring at Heathrow

The value of identifying various emission sources has been shown in a recent study at Heathrow Airport involving Cranfield scientists. Low-cost sensors were used to show the impact of measures taken to improve pollutant levels. This could be implemented routinely at major airports and co-ordinated with existing air quality networks.
Cranfield Aerospace Solutions Ltd

Cranfield Aerospace Solutions is at the centre of a number of market-leading electric and hybrid-electric aircraft projects.

A unique UK aerospace SME with the capability to design, build and fly a whole new aircraft concept, it holds CAA/EASA Design Organisation (DOA) and Production Organisation (POA) Approvals.

The company, a wholly-owned subsidiary of Cranfield University, aims to accelerate the world’s transition to innovative, electric and autonomous air vehicles. It is the aircraft DOA and POA for the Volante Vision eVTOL aircraft concept, launched at Farnborough 2019 with partners Cranfield University, Aston Martin and Rolls-Royce.

Project Fresson – Scottish islands electric aircraft service

Project Fresson is the first phase in a long-term strategy to exploit the sub-regional global aviation market that is now ripe for disruption by means of electric and hybrid-electric propulsion. The project aims to develop the world’s first passenger-carrying commercial electric aircraft by modifying an existing aircraft design – the nine-seat, twin-turboprop Britten-Norman Islander – with an electric propulsion system. The project hopes to have the aircraft EASA-approved by 2023/24, ready to launch the world’s first commercial electric air transport routes. Routes operated by Scottish regional airline Loganair in the Orkney Islands are targeted for the initial service launch.

The final phase of the strategy will be to design, flight-test and manufacture a new EASA-certified 19-seat aircraft at Cranfield.

For further information, please contact:
Paul Hutton
CEO, Cranfield Aerospace Solutions
T: +44 (0)1234 754046
E: enquiries@cranfieldaerospace.com
Cranfield's global research airport

Multi-User Environment for Autonomous Vehicle Innovation (MUEAVI)
This instrumented transport corridor runs through the middle of the campus and is used for the development of intelligent and autonomous vehicles. Sensors include lidar (laser scanners that can measure distance), radar that can detect pedestrians and cyclists, and thermal imaging cameras.

Digital air traffic control centre

Runway sensors
Will monitor air quality, soil moisture, temperature and noise levels, including sound from wildlife. Other sensors will allow monitoring of water quality and levels, and runway and ground movements around the airport.

National Beyond Visual Line of Sight Experimentation Corridor (NBEC), see page 9

Aerospace Integration Research Centre (AIRC)

National Flying Laboratory Centre (NFLC)
The NFLC's "flying laboratory" provides a viable alternative to flight test and research work using simulators, wind tunnels, or more expensive jet aircraft, often testing new parts and equipment for industry partners. The NFLC also has other light aircraft used for research.

Facility for Airborne Atmospheric Measurements (FAAM)
Dedicated to the advancement of atmospheric science, the specially-modified research aircraft is jointly owned and run by the Natural Environment Research Council (NERC) and the Met Office.

Air Park (planned)

Cranfield Aerospace Solutions Ltd, see page 21

Digital Aviation Research and Technology Centre (DARTeC)
A unique centre addressing the global challenges of digital systems integration across aviation.

"Smart" car park connected to MUEAVI

Data from MUEAVI is relayed into the Intelligent Mobility Engineering Centre (IMEC)
control room. Within IMEC there are vehicle workshops, vehicle electrification and autonomous vehicle research capabilities.

Clean, renewable energy for the airport flows from a solar power farm located on the other side of the airfield.
Akkas Miah
Business Development Manager
Research and Innovation
Cranfield University
Cranfield
MK43 0AL, UK
E: a.miah@cranfield.ac.uk
www.cranfield.ac.uk